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Abstract. We present a framework that allows for a systematic assessment of risk given a specific model
and belief on the market. Within this framework the time evolution of risk is modeled in a twofold way.
On the one hand, risk is modeled by the time discrete and nonlinear garch(1,1) process, which allows for
a (time–)local understanding of its level, together with a short term forecast. On the other hand, via a
diffusion approximation, the time evolution of the probability density of risk is modeled by a Fokker-Planck
equation. Then, as a final step, using Bayes theorem, beliefs are conditioned on the stationary probability
density function as obtained from the Fokker-Planck equation. We believe this to be a highly rigorous
framework to integrate subjective judgments of future market behavior and underlying models. In order to
demonstrate the approach, we apply it to risk assessment of empirical interest rate scenario methodologies,
i.e. the application of Principal Component Analysis to the the dynamics of bonds.

PACS. 05.45.Tp Time series analysis – 02.50.Ey Stochastic processes

1 Introduction

Risk or volatility behaviour of financial instruments may
be described by nonlinear dynamics and the presence of
noise, as it has been suggested in the finance [1] and
econophysics [2] literature. The most important observa-
tion here is, that periods of high and low volatility tend
to be separated. This usually is referred to as volatility
clustering and might be observed in a number of different
financial time series.

Distributions of solutions of such systems, which ini-
tially are Gaussian, will not remain so when the systems
evolve. However, finance professionals like risk managers,
heavily depend on modelling this behavior in order to
quantify risk within their usually highly complex port-
folios. In addition to that, portfolio managers have to ex-
press opinions on the market in order to gain from the
future price behaviour of financial instruments in their
portfolios. The key question then is to bridge the gap be-
tween a fine grained model of volatility, which allows for
a local description of its current level together with short
term forecasting and an understanding of the time evo-
lution of its probability density function (pdf). The later
to be an essential ingredient in order to understand the
evolution of risk on longer time horizons and as a basis
for an incooperation of beliefs.

In the present paper, we therefore address the problem
of integrating beliefs into systems modeled by nonlinear
stochastic differential equations. We present a framework
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where beliefs are considered to be drawn from Gaussian
pdfs. Calculating a prior pdf from a Fokker-Planck equa-
tion (FPE), describing the time evolution of the volatil-
ity’s pdf, we apply Bayes theorem in order to condition the
beliefs on the prior knowledge. The resulting posterior dis-
tribution then generates scenarios where prior knowledge
and beliefs are rigorously integrated.

Although the presented approach is general and might
be applied to a wide range of asset classes, we demonstrate
the approach on empirical scenario generation methodolo-
gies, namely the Principal Component Analysis (PCA) [3]
of the yield curve dynamics [4,5].

2 Bond price dynamics

Consider daily price changes of Euro Government bonds
from 7/1996 - 7/2000, as approximated by daily changes
∆pm,n = pm,n− pm,n−1 of REX price indices pm,n, where
m = 1, ..., 10 is the maturity and n is the discrete time
in days. In order to construct an empirical model of the
underlying dynamics we apply PCA to construct a linear
orthogonal superposition of i = 1, ..., N independent fac-
tors si,n by an eigenvalue decomposition of the correlation
matrix of the 10 time series ∆pm,n. The resulting model
can be expressed by

∆pm,n = 〈∆pm〉n +
N∑
i=1

wm,i∆si,n , (1)

where wm,i are the factor loadings and 〈...〉n expresses an
average over n. In this model the total variance of ∆pm,n
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Fig. 1. The PCA generated factor ∆s1,n (-), the shift, together
with the garch(1,1) estimated conditional variance σn (- -) is
shown. Volatility clustering is observable in both time series.
For convenience has σn been multiplied by the factor 100.
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Fig. 2. The PCA generated factor ∆s2,n (-), the twist, to-
gether with the garch(1,1) estimated conditional variance σn
(- -) is shown. Volatility clustering is observable in both time
series. For convenience has σn been multiplied by the factor
100.

is given by the sum of the variances of the single factors
si,n. Furthermore does the average 〈∆pm〉n become close
to zero and might thus be neglected in the following.

The resulting first two factors ∆s1,n and ∆s2,n are
shown in Figure 1 and Figure 2. Immediately one ob-
serves volatility clustering to be present in both time se-
ries, although regimes of high volatility tend to be more
separated from regimes of low volatility in the series∆s2,n.
Since the first two factors show to explain more then 95
percent of the variance of the data, with the first and
second component explaining about 80 and 15 percent re-
spectively, a model containing only these factors might
be considered as a good approximation to the dynamics.
A closer examination of the factor loadings wm,i in Fig-
ure 3 allows us to interpret the dynamics in terms of a
parallel shift over maturities, superimposed by a twist
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Fig. 3. The PCA generated factor loadings wm,i indicate that
the price behavior of Euro Government bonds is dominated by
a shift (-) along maturities, superimposed by a twist (- -) at 5
year maturity.

around m = 5. This type of behavior, of course, is known
among finance professionals and exploited for dimension
reduction in Monte-Carlo type interest rate scenario sim-
ulation and for structuring trades within bond portfolios.

3 Risk dynamics

3.1 Discrete-time garch modelling

Volatility clustering in the time series ∆s1,n and ∆s2,n

and rather slow decaying autocorrelation functions of its
squares ∆s2

1,n and ∆s2
2,n, indicate that the time evolution

of risk can be modeled by a discrete time garch(1,1) [6]
process as defined for each factor separately by

∆sn = σnZn (2)
σ2
n+1 = ω + βσ2

n + ασ2
nZ

2
n , (3)

where {Zn} ∝ i.i.d. N(0, 1) and σ2
n is termed conditional

variance. Here and in the following we will drop the indices
1 and 2 whenever the equations are to be applied to both
series, i.e. ∆s1,n and ∆s2,nto become ∆sn and σ1,n and
σ2,n to become σn. The process is linear in mean, nonlinear
in variance and allows for an estimation of volatility in
terms of conditional variance.

The volatility itself, in principle, is not observable, but
has to be estimated by averaging over a specific time win-
dow or by derivation from other sources, like option im-
plied volatilities. These empirical methods, however, suffer
from the major drawback, that they either do lag behind
the current volatility (through time averaging) or rely on
financial instruments which possibly do not have enough
market liquidity and therefore might result in a poor es-
timator. Equation (3) instead, allows for a direct estima-
tion of risk from the underlying series and even enables
for short term forecasting.

Performing a least squares fit on the data, one arrives
at the following parameters for the processes as defined
by equation (2) and equation (3), for the shift and twist
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respectively: ω = 0.0002, β = 0.0523, α = 0.9238 and
ω = 0.0006, β = 0.1228, α = 0.7613. The estimation of the
conditional variance σ2

n is shown in Figure 1 and Figure 2
together with the time series of ∆s1,n and ∆s2,n. It can
be observed that the conditional variances as estimated by
the garch(1,1) process estimate the volatility of the factors
on time and with good quality.

Unfortunately one is not able to derive a closed form
expression for the stationary distribution of the garch pro-
cess. However, such a distribution function together with
an understanding of its time evolution is a crucial building
block for risk management purposes.

3.2 Garch diffusion approximation

In order to obtain an expression for the stationary
distribution of the garch(1,1) process we seek a diffusion
approximation of the Markovian garch process by allow-
ing the time intervals between successive time steps n to
approach zero. Applying an approximation scheme of the
form

∆snh = σnhZnh (4)

σ2
(n+1)h = ωh + βhσ

2
nh +

1
h
αhσ

2
nhZ

2
nh , (5)

with {Znh} ∝ i.i.d. N(0, h) and h being a discrete time
interval, [7] obtains the following diffusion approximation
in the limit h→ 0

dst = σtdw1,t (6)

dσ2
t = (ω +Θσ2

t )dt+ ασ2
t dw2,t , (7)

together with a proof of existence of the stationary distri-
bution. We find Θ < 0, t to be the continuous time and
dw1,t and dw2,t to be two independent standard Brown-
ian motions, independent of initial values s0 and σ2

0 . The
terms D1(σ2) = ω + Θσ2

t and D2(σ2) = ασ2
t are deter-

mining the drift and diffusion of the process.

4 Scenario generation

4.1 Fokker-Planck equation

The time evolution of the probability density W (v, t)
of finding the system, as described by the stochastic
differential equation (Eq. (7)), in a state v = σ2 after
time t can be approximated be a Fokker-Planck or
Forward-Kolmogorov equation [8]

∂W

∂t
= − ∂

∂v
D1(v)W +

∂2

∂v2

D2(v)2

2
W . (8)

We like the reader to note that since the FPE is obtained
from a higher order Kramers-Moyal expansion after trun-
cation of terms higher then second order and since the
sample paths of equation (7) are not continuous functions
in time, the FPE yields only an approximate description
of the time evolution. Furthermore it is silent about the
time evolution of the higher moments.

Observing that in the stationary state the probability
current as defined by equation (8) must vanish, one ob-
tains the stationary distribution W ?(v) after integration
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Fig. 4. The inverse gamma pdf for the shift is shown, together
with the empirical distribution of the empirical variance.
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Fig. 5. The inverse gamma pdf for the twist is shown, together
with the empirical distribution of the empirical variance.

of equation (8). Obtaining the stationary distribution of
the FPE is not an easy task for general drift and diffu-
sion terms and for higher dimensional processes it might
only be obtained by numerical procedures. The present
situation, however, is analytically tractable.

Inserting the drift and diffusion terms from
equation (7) into equation (8) yields the Fokker-
Planck equation

∂W

∂t
= − ∂

∂v
(ω + Θv)W +

∂2

∂v2
(
v2α2

2
)W, (9)

and one finds the conditional variance to be distributed
as an inverse gamma distribution in the stationary state
W ?(v)

W ?(v) =
1

baΓ (a)
v−(a+1) exp(− 1

bv
), (10)

with parameters a = 1 + 2Θ/α2 and b = 2ω/α2. For illus-
tration we show in Figure 4 and Figure 5 the empirical dis-
tribution function of the empirical variance of ∆s1,n and
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∆s2,n averaged over a time window of 5 days, together
with an estimation of the stationary pdfs as given by
equation (10). The results show to be in good agreement.

4.2 Bayes theorem

Up to now we have obtained a detailed model for the time
evolution of risk. The time discrete formulation, on the one
hand, allows for a fine grained model and short term fore-
casting. The diffusion approximation, on the other hand,
together with the FPE, for an understanding of the time
evolution of the distribution function towards its station-
ary state.

In order to integrate beliefs x into the modelling pro-
cedure we apply the Bayes theorem [9]

W (v|x) =
W (x|v)W ?(v)∫
W (x|v)W ?(v)dv

· (11)

Here W ?(v) is the pdf as obtained form the FPE and
contains all available information on risk regarding the
modelling procedure. The pdf W (x|v) describes the belief
on the future risk behavior, given the current level of risk.
The resulting pdf W (v|x), finally, allows for a systematic
estimation of expected risk conditioned on the modelling
procedure.

For the purpose of scenario generation we assume M
beliefs xj to be drawn from normal densities N(o, v), re-
sulting in the belief density

W (x|v) =
M∏
j=1

1
(2πv)1/2

exp(− 1
2v

(xj − o)2). (12)

In order to satisfy the central limit theorem for the beliefs
as implied in equation (12), it has to be ensured that a
sufficient number of beliefs xj are independently estimated
and that no single belief dominates the fluctuations of the
entire population of beliefs.

The posterior density, as obtained by combining equa-
tion (10) and equation (12), again yields an inverse gamma
density, with new parameters anew = a+ n/2 and bnew =

b
1+ b

2
PM
j=1(xj−o)2 .

4.3 Scenarios

Consider the prior pdfs W ?(v1) and W ?(v2) as shown in
Figure 4 and Figure 5. Since the ∆s1,n and ∆s2,n are
orthogonal and decorrelated for each n (as a result of
PCA), the product W ?(v1,2) = W ?(v1)W ?(v2) represents
the prior information on total scenario risk.

Assume to have obtained beliefs for the future behavior
of the risk of the shift v1 and the risk of the twist v2, i.e.

x1 = [0.01 0.20 0.50 0.20 0.12 0.10 0.20 0.07 0.02 0.01]

and

x2 = [0.10 0.20 0.05 0.20 0.12 0.10 0.20 0.10 0.20 0.12] ,
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Fig. 6. The prior pdf for the shift (-) is shown, together with
the posterior (- -) as obtained after integration of beliefs.
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Fig. 7. The prior pdf for the twist (-) is shown, together with
the posterior (- -) as obtained after integration of beliefs.

resulting from a variety of different sources like regres-
sion models, macroeconmic valuations or even opinions
of experienced traders. The update of the prior, equa-
tion (10), with the beliefs, results in the inverse gamma
posterior as shown in Figure 6 and Figure 7. The poste-
rior W (v1,2|x1,2) = W (v1|x1)W (v2|x2) now contains all
available information on risk for both, the shift and the
twist. As it can be seen from the figures, the expectation
regarding the risk of the shift is more pessimistic (result-
ing in a shift of the posterior along the x-axis as compared
to the prior) and more heterogeneous (resulting in wider
posterior as compared to the prior) then the expectation
regarding the risk of the twist.

In a scenario generation context, this result would in-
dicate that the portion of a trade regarding the twist will
generate the desired profit more likely then the portion re-
garding the shift. A portfolio manager will therefore seek
to hedge the portfolio exposure regarding the shift as good
as possible in order exploit the expected dynamics of the
twist.
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Fig. 8. Worst case scenarios in the shift-twist plane are shown.
It is assumed that returns are normally distributed for time
horizons much larger then 1 day. The prior worst case scenario
is located at the origin, the current market state, whereas the
posterior worst case scenario can be found at a location of the
plane where the market is expected to be found after the time
horizon under consideration.

An elegant visualization of this situation can be ob-
tained by a plot in a shift-twist plane (Fig. 8). Recognizing
that the returns of bonds (and most other financial in-
struments) are normally distributed on time horizons
much larger then 1 day [2] one can estimate a scenario
variance by specifying a given level of the probability den-
sity of volatility W (v1,2|x1,2) as worst-case scenario, for
example. In the figure a prior worst case scenario is shown
at the origin of the plane, indicating the current state of
the bond market, together with a corresponding posterior

worst case scenario at a location of the plane where the
portfolio manager expects the market to be found at the
time horizon under his consideration.

5 Summary

We have presented a framework where beliefs on the mar-
ket behaviour are integrated in a quantitative model of
risk. Besides a (time–)local modelling of risk, via the garch
process, a diffusion approximation is used to obtain a
Fokker-Planck equation which describes the time evolu-
tion of the probability density function of risk towards its
stationary state. Using Bayes theorem, subjective opinions
on market behaviour are then integrated into the model.

While the framework does not allow for a faultless in-
vestment decision, it does help to condition (and visual-
ize) forecasts on past experience and detailed models of
the market. Doing so it allows for integrated risk manage-
ment, whenever bets on the market are actively taken.
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